Microphthalmia resulting from MSX2-induced apoptosis in the optic vesicle.
نویسندگان
چکیده
PURPOSE Microphthalmia is a relatively common ocular malformation. Molecular mechanisms that lead to this dire condition are largely unknown. Msx genes have been shown to be expressed in the developing eye. In the Msx1;Msx2, double mutant mouse, eye development arrests early in embryogenesis. To investigate possible functions of Msx2 in early ocular development, we created transgenic animals that overexpress Msx2. METHODS Msx2 transgenic embryos and nontransgenic littermates were examined histopathologically. The effect of Msx2 overexpression on retinal cell proliferation was assayed by bromodeoxyuridine (BrdU) incorporation and immunohistochemical staining. Apoptosis was determined by TUNEL labeling. Expression of retina and retinal pigmented epithelium (RPE)-specific genes was investigated by performing in situ hybridization or immunohistochemical staining. RESULTS Forced expression of the Msx2 gene resulted in optic nerve aplasia and microphthalmia in all transgenic animals. In developing retinas of Msx2 transgenic animals, proliferation was significantly reduced and increased numbers of retinal cells underwent apoptosis. Marker analysis showed suppression of Bmp4 and induction of Bmp7 gene expression in the optic vesicle. Ectopic concurrent expression of the RPE cell markers Cx43 and Trp-2 in the neural retinal layer suggests cell fate respecification. CONCLUSION These results indicate that forced expression of Msx2 perturbs BMP signaling in the developing eye and is accompanied by an increase in retinal cell death and a reduction in cell proliferation. Thus, deregulated Msx2 gene expression may be a plausible genetic mechanism by which the autosomal dominant form of congenital microphthalmia may arise.
منابع مشابه
Ectopic expression of Msx2 in chick retinal pigmented epithelium cultures suggests a role in patterning the optic vesicle
During the initial stages of vertebrate retinogenesis, cells of the optic vesicle adopt one of two alternate cell fates. Cells in the distal-most part of the vesicle, immediately beneath the surface ectoderm, undergo neural differentiation; cells in the proximal part differentiate into retinal pigmented epithelial cells. The mechanisms that establish this pattern of differentiation are poorly u...
متن کاملStudy the Efect of Retinoeic Acid and Mitogenes on Lens and Optic Vesicle of Mouse Embryo(Nmri) and Fos Protein Expression In Culture Medium
Purpose: This work studies possible role of FOS proteins, retinoic acid (RA) and mitogens during optic vesicle development in vitro. Materials and Methods: Fos was detected as a product of 55-62 kDa in optic vesicles via electrophoretic procedures. Incubation (24hr) of optic vesicles with RA 25nM and mitogens(serum10%,insulin2.5%) on the day 9.5 of gestation revealed that Fos was induced by mi...
متن کاملHyperplastic primary vitreous with hemorrhage manifested as a hyperechoic mass in the fetal orbit by prenatal ultrasound in a case of isolated unilateral microphthalmia
Congenital microphthalmia is a rare anomaly of the fetal orbit resulting from developmental defects of the primary optic vesicle. Chromosomal anomalies, genetic defect, infection, and prenatal drug exposure are the most common causes. Congenital microphthalmia is usually associated with other abnormalities, and cases of isolated microphthalmia are rarely reported. Congenital microphthalmia can ...
متن کاملLoss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation.
Microphthalmia-associated transcription factor (MITF) is a master regulator of pigmented cell survival and differentiation with direct transcriptional links to cell cycle, apoptosis and pigmentation. In mouse, Mitf is expressed early and uniformly in optic vesicle (OV) cells as they evaginate from the developing neural tube, and null Mitf mutations result in microphthalmia and pigmentation defe...
متن کاملAnophthalmia and serious microphthalmia: a summary of the problems associated with antenatal diagnosis and therapeutic refunding in Sub-Saharan Africa
Anophthalmia and serious microphthalmia are conditions characterized by the complete lack of the primary optic vesicle or the presence of the rudimentary eye-like structure. These are rare prenatal conditions, yet diagnoses remain a challenge in Black African areas, raising a major concerns surrounding care after birth. This paper reports a case of anophthalmia and serious microphthalmia, the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2003